

### HIGH-PERFORMANCE NDT SOLUTIONS

# **CODA Application Brochure**

# **Residual Stress Measurement**

## **Equipment** Highlights

Internal residual stress measurement on plates, train wheels, pipelines and thick structures using proprietary EMAT pulser technology, sensors, scanners and positioners.



Meets EN 13262:2011 & VPI 09 Supported by the main railroad ECMs.



**Great Repeatability** Repeatability of ±5 MPa, in compliance with standard requirements.



**Custom Stress Measurement Software** Tailor-made software for residual stress measurement in MPa or psi.



#### **No-contact EMAT Technique**

Dry inspection, no couplant is required.



#### **Automatic Reporting**

Built-in reports with residual stress measurement, graphs, snapshots, and other data.

## **EMAT** Technology

EMAT, or Electro Magnetic Acoustic Transducer, is an Ultrasonic Testing (UT) technique that generates the sound in the part inspected instead of the transducer.

The technology can generate unique wave modes for accurate stress measurement.

#### Methodology

A dual EMAT sensor generates two orthogonally polarized shear horizontal ultrasonic beams.

- The system measures Time-of-Flight (TOF) in both radial and circumferential directions.
- Time-Of-Flight measurement accuracy equal or better than +/-0.0002" (0.005 mm).
- Birefringence value is calculated based on TOF measurements.
- Internal stress is directly correlated with birefringence.







🞽 sales@innerspec.com www.innerspec.com

USA | Spain | UK | China | Mexico | Bahrain | Australia

### Instrumentation

**CODA** is the first and only compact high-power UT flaw detector capable of working with both EMAT and piezoelectric sensors using Innerspec's patented pulser technology.

The portability of the equipment allows the user to determine residual stress in wheels already in service, mounted in axles or vehicles, quickly and effectively.

The semi-automatic scanner positions and moves the EMAT transducer through the wheel's rim, obtaining stress profiles at precise locations.



#### **Automatic Reporting Tools**



| <b>CODA SM</b> – Technical Specifications |                                                                 |                  |
|-------------------------------------------|-----------------------------------------------------------------|------------------|
| Ultrasonic Channels                       | 1 - EMAT                                                        | 1 - PIEZO        |
| Bandwidth                                 | 1500 kHz to 10 MHz                                              | 100kHz to 10 MHz |
| Mode of Operation                         | Pulse-Echo/Pitch-Catch                                          |                  |
| Units                                     | Stress Measurements in MPa and psi                              |                  |
| Repeatability                             | ±5 MPa                                                          |                  |
| Dimensions                                | 8.8"(W) x 7.2"(D) x 2.6"(H)<br>223 mm(W) x 182 mm(D) x 70 mm(H) |                  |
| Dual Channel Multiplexer                  | Yes                                                             |                  |
| Weight                                    | 3.49lb/1.58kg (2.97 lb/1.35kg without battery)                  |                  |
| Accesories                                | Semi-automated scanner for train wheels                         |                  |
| Rechargeable Battery                      | Li-Ion 14.4V, 49Wh, <10A@ 6.8Ah; up to 5 hours                  |                  |
| Software                                  | Tailor made residual stress software                            |                  |
| Communication                             | Wi-Fi 2x802.11ac/ax dual band<br>USB 3.0, Ethernet              |                  |
| Norms & Standards                         | Meets EN 13262:2011 & VPI 09                                    |                  |
|                                           |                                                                 | WITH             |

